Subspace Linear Discriminant Analysis for Face Recognition

نویسندگان

  • W. Zhao
  • R. Chellappa
  • P. J. Phillips
چکیده

In this paper we describe a holistic face recognition method based on subspace Linear Dis-criminant Analysis (LDA). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via Principal Component Analysis where the subspace dimension is carefully chosen, and then we use LDA to obtain a linear classiier in the subspace. The criterion we use to choose the subspace dimension enables us to generate class-separable features via LDA from the full subspace representation. Hence we are able to solve the generalization/overrtting problem when we perform face recognition on a large face dataset but with very few training face images available per testing person. In addition, we employ a weighted distance metric guided by the LDA eigenvalues to improve the performance of the subspace LDA method. Finally, the improved performance of the subspace LDA approach is demonstrated through experiments using the FERET dataset for face recognition/veriication, a large mugshot dataset for person veriication, and the MPEG-7 dataset. We believe that this approach provides a useful framework for other image recognition tasks as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video-based face recognition in color space by graph-based discriminant analysis

Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...

متن کامل

A linear discriminant analysis framework based on random subspace for face recognition

Linear Discriminant Analysis (LDA) often suffers from the small sample size problem when dealing with high dimensional face data. Random subspace can effectively solve this problem by random sampling on face features. However, it remains a problem how to construct an optimal random subspace for discriminant analysis and perform the most efficient discriminant analysis on the constructed random ...

متن کامل

A Comparative Study of Linear Subspace Analysis Methods for Face Recognition

Face recognition is a typical problem of pattern recognition and machine learning. Among these approaches to the problem of face recognition, subspace analysis gives the most promising results, and becomes one of the most popular methods. This paper researches typical subspace analysis approaches, based on the introduction of main approaches of linear subspace analysis, such as Principal Compon...

متن کامل

Performance analysis of Linear appearance based algorithms for Face Recognition

Analysing the face recognition rate of various current face recognition algorithms is absolutely critical in developing new robust algorithms. In his paper we propose performance analysis of Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Locality Preserving Projections (LPP) for face recognition. This analysis was carried out on various current PCA, LDA and LPP based...

متن کامل

Face Subspace Learning

The last few decades have witnessed a great success of subspace learning for face recognition. From principal component analysis (PCA) [43] and Fisher’s linear discriminant analysis [1], a dozen of dimension reduction algorithms have been developed to select effective subspaces for the representation and discrimination of face images [17, 21, 45, 46, 51]. It has demonstrated that human faces, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999